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ABSTRACT

SYNTHESIS METHODS APPLICABLE TO SEM

POLE-PAIR ADMITTANCES

The applicability of the first layer conjugate pole pair at a time equiv-

alent circuit synthesis for energy collecting structures is considered. It

j is found that, at least for some highly resonant structures, the whole eigen-

set of poles can be approximately represented by the first layer dominant

pole. The driving point admittance function can then be synthesized in the

form of a parallel connection of simple pole-pair modules. The biquadratic

functions corresponding to each conjugate pole pair are, in general, not pos-

itive real and thus physically realizable. It is found that after negligible

resistive padding approximate realization is possible. The padded function

is a minimum biquadratic - the real part of it is zero at some frequency Wo.o

If w = 0 or w = =, the function can be easily realized by continued fraction
0 0

expansion. If however w is finite, it is shown, that the only transformer-

less configuration derivable is the Bott-Duffin network 'The explicit form

of this network, as well as Brune and Dalington network, is derived. It is

I demonstrated that the Darlington network reduces to Brune network or, if

surplus factors are used, to Bott-Duffin network. The Miyata procedure is

not applicable to minimum biquadratics.

I After further approximation the Bott-Duffin network can be reduced to

simple four element structure which has been shown to give favorable results

I•  for the thin wire dipole and loop antennas.

It is demonstrated that the equivalent networks derived are very sensi-

tive to changes in element values. This and the influence of the parasitic

Ieffects associated with real circuit elements can unfavorably affect the
practicability of the derived networks, should they be constructed.
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Section I

INTRODUCTION

The need for finite, lumped equivalent networks valid over a significant

bandwidth in the analysis and design of antennas and scatterers has been

widely recognized for a long time. Such networks may be useful, for example,

in experiments designed to test the terminal circuits intended to operate

with an antenna, before the antenna is actually constructed [35]. Also,

existing circuit analysis programs can be used to calculate the frequency and/

or time response of the structure under consideration.

The Singularity Expansion Method (SEM) is a powerful and convenient

means of constructing equivalent networks for antennas and scatterers [4,5,

29,30,39]. From the SEM data the input admittance of a single-port struc-

ture can be expressed as

Y(s) = E Y (s) (1)n n

where Y n' the terminal eigenadmittances, are given by
n&

Y (s) = n + ent (s) + bi (s) (2)
n s - s n n

where n indexes over the eigenmode sets of poles, the index i distinguishes

among the poles associated with the given eigenmode, and an are the resi-

dues associated with the poles s The ient and the Ybi are, respectively,j ni" n n

iAdmittance function resulting from the short-circuit boundary value
problem is used in this work. However, analogous results are valid for
the impedance function derived from the open-circuit boundary value

Jproblem.

I
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the possible entire function and branch integral function contributions.

Often it is more convenient to rewrite (2) in the form

(S) n a + a ) 'ent(s 'bi (3)
ns) = ni + +n__ Cs) + Yn Cs)()
n S i s ni nn

where the entire function has been appropriately modified to compensate for

the constant terms included in the summation. The terms under the summation

signs in (2) and (3) are known, respectively, as pole admittances and modi-

fied pole admittances [5].

It should be pointed out that for numerically or experimentally derived

SEM descriptions the entire function and the branch integral contributions

are not explicitly identifiable. To date, it also appears that for practi-

cal circuit synthesis it is necessary that both of these terms be zero.

Further, for many problems of interest, they seem not to occur. Therefore,

the branch integral and entire function terms are dropped henceforth from

consideration.

The SEM data (the poles and residues) for a given structure can be

extracted in three ways: 1) from measurements; 2) from an integral equa-

tion formulation by method of moments technique; or for certain simple

structures, 3) from an integral equation formulation- analytically. As a

typical example, the location of poles for dipole and loop wire antennas is

shown in Figures 1 and 2 [42,43,45,71. The first layer poles (poles closest

to the j-axis) with the associated residues are listed for both structures

in Table 11 and Table 2.

1The first pole of the dipole has been slightly modified (within a
5% accuracy margin) by Streable and Pearson in order to make the modified
pole-pair admittance physically realizable.

I
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TABLE 1

First layer poles and residues for center-fed cylindrical
antenna with L/d=100

L is the length of the dipole and d is the diameter of the
wire. The even poles with zero residues are omitted.

No.1 Poles1  Residues1

2 -2 31. -.08427 + j 0.9158 .1112 x 10 + j .3121 x 10

3. -.1473 + j 2.870 .1319 x 10- + j .3301 x 10-

5. -.1877 + j 4.834 .1423 x 10 + j .3521 x 10

7. -.2177 + j 6.792 .1496 x 10-2 + j .3699 x 10
-3

9. -.2426 + j 8.736 .1557 x 10- 2 + j .3839 x 10
- 3

1Normalized to cr/L, c - speed of light.

2Slightly modified by Streable and Pearson.

The admittance (1) can be realized only approximately by a finite

lumped network because the number of modes is infinite and must be truncated.

Also, the number of poles associated with each eigenmode is infinite for

some structures and only a finite number of them can be used. The truncated
1

admittance function may be no longer positive real (PR) and thus realizable.

In such case still useful approximate realization can often be obtained

by finding pole groupings which give PR (or nearly PR) admittance function

and/or by resistive padding. Both approaches were first investigated,

successfully, by Streable and Pearson [39].

iSee Section II for explicit definition of positive real functions.
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TABLE 2

First layer poles and residues of loop wire antenna with R=15.

S=21n(2nb/a), where a and b are the radius of the wire and the
radius of the loop, respectively.

No. Poles1  Residues1

1. -.7487 x 10-1 + j 1.0388 .5301 + j .8934 x l0
-4

2. -.1083 + j 2.0526 .5726 + j .9395 x 10
- 4

3. -.1340 + j 3.0625 .6033 + j .9873 x 10
-4

4. -.1558 + j 4.0706 .6279 + j .1033 x 10
- 3

5. -.1751 + j 5.0777 .6489 + j .1076 x 10_

-3
6. -.1927 + j 6.0840 .6672 + j .1117 x 10

7. -.2091 + j 7.0897 .6837 + j .1157 x 10
- 3

8. -.2245 + j 8.0950 .6988 + j .1195 x 103

9. -.2391 + j 9.0999 .7126 + j .1231 x 103

10. -.2529 + j10.1046 .7255 + j .1267 x 10
- 3

1Normalized to c/b. There is also a pole at the origin with the
real residue a =4.6199 x 10-4. This pole can be easily real-
ized as a singe shunt inductance L=l/a00 and is dropped from
consideration here.

One pole grouping possible, which leads to PR function (although

recent investigations indicate that the branch integral contribution must

be retained in the terminal eigenadmittance for some structures) is the

grouping according to eigenmodes [29]. This, however, has the disadvantage,

that the number of poles increases dramatically for higher modes (see

Figures 1 and 2) resulting in impractically complex network. Also, the

third- and higher-layer poles are usually hard to extract, and for many

..... ..... ..I
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even simple structures have not, so far, been extracted.

Even if the original function (1) is PR, a decomposition of it into

simpler, realizable terms is desirable. Such decomposition can simplify the

synthesis procedure significantly and also can lead to simpler network with

more desirable topology.

One particularly attractive way of decomposition is breaking the origi-

j nal admittance function (1) into conjugate-pole-pair modules, as first

suggested by Baum [5] and investigated further by Streable and Pearson [39].

Because the first layer poles are so close to the j-axis (see Figures

1 and 2), they give the main contribution to the input admittance of the

structure. The question immediately arises if their contribution alone

could reasonably good approximate the whole admittance over the frequency

range of interest. That this is the case (at least for some high-Q struc-

tures) has also been demonstrated by Streable and Pearson [39]. In this

procedure the whole eigenmode pole group is represented by a single, first-

layer pole.

The first-layer pole grouping is particularly useful in cases when the

SEM data is determined from measurements, when the higher-order layers of

poles are extremely difficult to find [34].

The main concern of this study is the synthesis of the admittance

function (1) on the conjugate-pole-pair basis. Thus, the realization of (1)

in the form

N
Y(s) ~  E Y. (s) (4)i 1

where

a. a.

(s) S +- +G. (5)
S-S. S-5_ 1

!
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is investigated. In (5) the asterisk denotes the complex conjugate, and G.1

is the padding necessary to render Y. PR. The index i distinguishes among1

the conjugate pole pairs.

After putting the terms over common denominator, the admittance (5)

takes the form of a general biquadratic function

= As2 + Bs + C (6)

Ds2 + Es + F

This function received a great deal of attention in the literature, because

explicit networks can be derived for it. The results scattered in the lit-

erature [13,14,28,33,20,3,17,41,48,19,36,46,18] are used heavily in this

report. The emphasis of this work, however, is on the approximate synthesis

stemming from initially non-PR biquadratics derived from SEM data. This has

important consequences on what synthesis procedures are applicable.

If not otherwise stated it will be assumed that f(s) represents an

admittance function Y(s).

The plan of the work is as follows. In Section II are summarized the

basic concepts concerning the PR functions, to which references will be made

in later parts of this study. In Section III the PR-ness conditions for

biquadratic functions are derived, the necessary padding (if the function

is non-PR) is computed, and synthesis methods for some special cases are

considered.

In Section IV a study on the applicability of the various general

synthesis procedures to a minimum biquadratic function is undertaken.

Explicit Brune, Bott-Duffin and Darlington networks are derived. In Section

V some important problems connected with the practical realization of the

networks, such as the influence of parasitic elements, are briefly
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considered. A computer program for the synthesis of conjugate-pole-pair

modules, implementing the results of previous sections, is included in the

Appendix.

Throughout this study some concepts are illustrated with the particular

examples of the straight wire and loop wire structures with the parameters

given in the Figures 1 and 2, and in Tables 1 and 2. The particular values

SL=100m and b=100m are used in synthesis in order to fix explicit values

for circuit elements.

tA



Section II

POSITIVE REAL FUNCTIONS AND BASIC CONCEPTS

A positive real (PR) function f(s) is defined as a function of complex

variable s = a + jw satisfying the two requirements

Re f(s) > 0 for a > 0,

and (7)

f(s) real when s is real.

The positive real concept was introduced by Brune [10], who proved that

every driving-point function of a physical network is PR and that every

rational function that is PR can be realized using lumped RLCM elements. It

was later proved by Bott and Duffin that any rational PR function can be

realized as a driving point immitance with RLC elements only [8].

Since it is extremely difficult to apply the conditions (7) directly,

an equivalent set of requirements, which are easier to check, is usually

used [15]. Thus, a rational function f(s) is PR if the following necessary

and sufficient conditions are satisfied (listed and carried out in their

order of difficulty in testing them):

A. It has no poles or zeros in the right half-plane

B. Any j-axis poles are simple and have positive real residues

C. Re f(j) > 0 for 0 < w < c .

In an attempt to realize a driving-point immittance f(s) it is usually

worthwhile, before applying a general synthesis procedure, to check if

there are any poles or zeros on the j-axis. Such poles and zeros can be

easily removed from i(s) (susceptance reduction) and/or from Z(s) = l/Y(s)

- 10 -



I - 1

(reactance reduction) without destroying the Pr-ness of the original func-

tion. When all the j-axis poles are removed from an admittance function

Y(s), it is called a minimum-susceptance function [11. In a similar manner

we define a minimum-reactance function as an impedance Z(s) that has no poles

on the j-axis. When, after applying these steps, a minimum-susceptance-

minimum-reactance function is obtained, still another simplification, the

so called resistance reduction is often possible. Namely, if the condition

C. above is satisfied with the inequality sign, a conductance G can be

removed from Y(s) (or resistance R from Z(s)) still leaving the remaining

function PR. The real part of this remainder function is zero at some fre-

quency wr0 therefore it is called a minimum-real-part function. If the zero

of the real part occurs at w = 0 or w0 ' it is also a zero of the whole

function because the imaginary part of a minimum-reactive-minimum-susceptive

function is already zero at these extreme frequencies. 1 This zero of Y(s)

(Z(s)) can be subsequently removed as a pole of Z(s) (Y(s)) and the whole

process of real- and imagninary-part reduction can be attempted again until

the so-called minimum function (minimum-reactance, minimum-susceptance and

minimum-real-part) is obtained. In some cases this Foster preamble tech-

nique can lead to a complete, successful realization [38]. In general,

IConsider Y(s), for example. Im Y(jw) is an odd rational function of w and
can take one of the forms

N(w2 )  N(w2)
Im {Y(j.)} = N(w or Im{Y(jw)} = -2

D(w 2 ) D(w2 )

Assume that Y(s) is purely imaginary at w = 0. Then if the first form
above holds, Z(s) will have a removable pole at s = 0. If the second form
holds, then Y(s) has a pole at s = 0 which can be removed. Similar argu-
ments hold for the case when the zero of the real part occurs at infinity.I

I
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however, we end up with a minimum function with zero real part at some finite

frequency w0 and one of the general synthesis procedures must be employed.

The procedures in question are those of Brune [10], Darlington [12], Bott "

and Duffin [8], and Miyata [26].

............... ..........
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Section III

SYNTHESIS OF BIQUADRATIC FUNCTIONS - PRELIMINARY

In this and the following sections we will be mainly concerned with the

synthesis of the biquadratic function (6) which can represent both Z(s) or

Y(s), as the case might be.

The PR-ness condition for the immitance function (6) can be easily

derived [23,1,21]. If the coefficients of (6) are positive, the conditions

A. and B. of Section II are automatically satisfied. Thus, to guarantee

that f(s) be PR, we require that

m m n n 4 2
Rfm2 1 nln2 = ADW + (BE-AF-CD)w + CFRe{f(jw)} ) (8)

2 2 2 2 2 2
m2  n2  s jW (F - Dw2 ) +E2W

be nonnegative for 0<w<- (condition C.), where mi, n1 denote, respectively,

the even and odd parts of the numerator, and m2 , n2 denote the even and

odd parts of the denominator of (6). This leads to the following necessary

and sufficient condition for f(s) to be PR:

(/A_ YCD)2 < BE. (9)

If (9) is fulfilled with the equality sign, f(s) is a minimum function.

For the important special case where f(s) - 0 at infinity, i.e. A = 0,

we have

f(s) + C (10)

Ds + Es + F

and the PR-ness condition (9) now reads

BE - CD > 0. (11)

- 13 -
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When f(o) = 0, i.e. C = 0, we obtain

_ As__+_Bs

f(s) 2 (12)

Ds + Es + F

with the condition

BE - AF > 0. (13)

The above conditions can be easily expressed in terms of the poles and

residues. Thus, for the conjugate pole-pair admittance

a a
-n ny S - S + - - (14)

n n

with a n + j$ and s = -a + "w we get the special case (10) wheren n n n n 3n

B = 2an C = 2(axn n -n nW)

D = 1E = cr n F = is nI2D=l E=2a n s

The PR-ness condition (11) and the requirement that the above coefficients

be positive give the following restriction on the residues

a Wn > a. (15)n On

This condition can be given a simple geometrical interpretation, as dis-

cussed by Guillemin [15].

The other special case (12) results from the modified conjugate-pole-

pair module

(S) n + n* +n (16)
n s - s s s- s* ST *

n n n n

This function approaches zero for s - 0 and is particularly well suited

for the modelling of the input admittance of simply connected objects.
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After combination of terms in (16) we get

2)A=2(0w -w a ) B = 2a 2 2 + 46 a w

nnl nn nfn n nnn

D = Isn12 E = 2anisn12  F = n 14

The requirement that A and B be positive leads to the conditions

n - a n > 0 (17)nnl nn-

and
e 2 2)

a (W - a 2 + 20 a w > 0. (18)n n nnn

The PR-ness condition (14) gives

-a- 2 + 2 2 > 0. (19)nnl n n nfl n n -

It is interesting to point out that the PR-ness tests (15) and (17)

are mutually-exclusive, which means that a conjugate-pole-pair module can

be realized only in one of the two forms (modified or unmodified), but not

in both.

As an example, the test values for the center-fed cylindrical antenna

are given in Table 3. As can be seen from this table, all poles except the

first one fail to meet criterion (19). The test (17) is met by all poles

(thus (15) is violated), so the realization in the unmodified form (14) is

in no case possible.

Although the results given in Table 3 are somewhat discouraging, it is

evident that the PR-ness conditions are in most cases only slightly vio-

lated. This suggests that, after negligible padding - that is removing a

small negative real part from the function and neglecting it - an approxi-

mate realization could be possible. The results of such an approach are

L
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TABLE 3

Test values for the first layer poles given in Table 1.

Test value

Pole (17) (18) (19)

-3 -3 -1. .1921 x 10 .9729 x 10 .1485 x 10-

-3 1-l
3. .7531 x 10 .1111 x 10 -.2945 x 102

5. .1435 x 10- 2  .3384 x 10-1 -.2088 x 10-1

7. .2187 x 10- 2  .7004 x 10-  .7048 x 10-1

9. .2976 x 10- 2  .1204 -.1689

discussed in a later part of this report.

It is evident from Section II that the nature of the frequency character-

istic of the real part of an immittance function Re f(jw) is extremely

important in the synthesis procedure.

Following Matthaei [23], we can, in general, classify immittances of

the form (6) in three classes: Class I having Re f(j) min at w = 0; Class

II having Re f(jw) min at w = -; and Class III having Re f(jw) min at finite

values of ± w (see Figure 3 (a), (b), and (c), respectively).0

As was pointed out in Section II, an important process in the syn-

thesis of networks is the procedure of removing a real constant from the

immittance function, so that the resulting remainder function f'(s) has

the property that

Re{f'(jw)i = 0. (20)

lWe allow the removal constant to be either positive or negative, thus
implying the. removal of a resistance or conductance in the positive
case, or implying the neglecting of a small negative quantity - i.e.
padding.

mfid -
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(a)

CLASS It

Re f(Jw)

(C)

Figure 3. Real part characteristics of three classes of PR biqruadratic
functions.
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Thus, we seek the frequency w and the removal constant a for which0

rr m m 2  n 1ln 2s

2 2 - - a 0 (21)
m 2 n n2 s= JW i

From (21) it can be seen that

mIm 2 - nIn 2 - am2 + an 2  .s w 0 (22)

must have second-order roots at frequencies where (20) is satisfied.

Expressing (22) in terms of the coefficients of (6), we obtain

D(A - aD) w - (W - aU)w 2 + F(C - aF) = 0 (23)

where

2
W AF +CD -BE U 2DF -E.

The requirement that (23) has double order root in w [47] leads to the

following equation for a

(U2 - 4D2 F2) 2 + (4ADF 2 + 4CD 2F - 2UW)a + (WL - 4ACDF) = 0 (24)

The smaller of the two roots of (24), for which

X au > 0 (25)

2D(A - aD) -

is the required solution.

Having a, the minimum-real-part frequency w can be computed from

W0

0 =X . (26)

Before subtracting a from F(s), we must compare it with a 0 f(0) and0

a = f(-). The smallest value among a, a0, and a is the sought minimum

value of Re f(jw).

The constant removal affects only the numerator coefficients of (6),
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I
the new values of which are given by

A = A' - GD

B = B' - GE (27)

C = C' - GF

where the old coefficients are primed.

If the a computed from (24) is negative, it gives the value of a shunt

conductance (or series resistance - for impedance function) which must be

added to the non-PR immittance f(s) in order to render it a minimum PR func-

tion. This procedure is called resistive padding [15].

As a typical example, the real part characteristic of the third unmod-

ified pole pair module for the dipole antenna is given in Figure 4. As can

be seen from Figure 4(a) the real part is negative for low frequencies.

This is shown in detail in part (b) of this figure. The minimum real part

frequencies and the resistive padding necessary to assure PR-ness of the

unmodified and modified pole-pair modules for the cylindrical antenna are

given in Table 4.

If any of the new coefficients A, B, or C in (27) happens to be zero,

the resulting function can be easily synthesized. Thus, if a = A'/D,

A = 0, and f(s) has the form (10). This immittance has zero at infinity

which can be readily removed as a single reactance. Similarly, if

a = C'/F, C = 0, and we obtain the function of the form (12), which has

zero at s = 0 which can be removed as a pole of 1/f(s). In both cases the

remaining function can be easily realized with three RL or RC elements.

The final networks for the two cases with explicit expressions for the

element values, both for f(s) = Y(s) and f(s) = Z(s), are given in Figures

5 and 6, and Figures 7 and 8, respectively.
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XI2 DIPOLE: POLE PAIR 3
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(a) 1TrC

Xi0-3 DIPOLES POLE PAIR 3
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Figure 4. (a) Real part characteristic of an unmodified pole-pair module

for the dipole antenna, and (b) fragment of (a).
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TABLE 4

Minimum real part frequencies and necessary padding for
pole-pair modules of dipole antenna.

Minimum real part Necessary padding

Pole-pair frequencyI  Unmodified Modified

1. .0 2.201

3. 1.598 4.959 51.85

5. 3.243 6.507 32.21

7. 4.967 7.546 26.44

9. 6.708 8.379 24.14

1Normalized.

The third case possible, B = 0, is realizable only if

AF - CD =0 (28)

(as a consequence of (19)). The resulting networks for the admittance

and impedance functions are shown in Figure 9.

The situation is more difficult for the case when all the coefficients

of (6) are greater than zero but still in some cases a simple realization

is possible. Thus if f(s) or its reciprocal is a Class I or Class II PR

function, it can be realized by a continued-fraction expansion - a process

of repeated long division and inversion applied to the numerator and the

denominator polynomials of the given function and its remainders in for-

ward or reverse order [23,22].

It can be shown (23,20] that the biquadratic function (6) can be

expanded in continued fraction only in two cases when either

C A
- > (29)F D
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(b)

Figure 9. Ladder networks for the case B =0.
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and

BE> (CD - AF) + D (30)

or

A C
> (31)

D F

and
C2

BE > (AF - CD) + CE 2 (32)-- F

hold.

If the imnittance (6) is a Class III function it cannot be realized

in a simple ladder form and in general more sophisticated synthesis pro-

cedures are necessary, as described in Section IV. However, if the func-

tion in question is not a minimum function, it often can be decomposed into

a sum of terms to which the simple synthesis procedures desscribed earlier

are still applicable [23,20]. Thus, if

BE > JAF - CDI (33)

the immittance (6) can be decomposed as follows.

If

A C
-> - (34)D F

we can write

CD 2 CD 2-- s +C A-- s +Bs
F F (35)f~= 2 + D2 (5

Ds + Es + F Ds+ Es F

where for the first term (28) is satisfied and it can be realized in one

of the forms shown in Figure 9. The second term is of the form (12) and

can be synthesized as shown in Figures 7 and 8. The PR-ness condition (13)

jis guaranteed by (33).

I

9
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If

-> -- (36)
F D

(and (33) holds) the following decomposition is possible

As2 + AF Bs + CD - AF

D D
f(s) = + (37)

Ds2 + Es + F Ds2 + Es + F

where again the first term is realizable as shown in Figure 9. The second

term has the form (10) and is realizable as shown in Figures 5 and 6.

Another alternative for decomposing a Class III nonminimum PR function

into sum of a Class I and Class II functions applies in some cases. It

takes the form

2
As + Ts (B - T)s + C

Ds + Es + F Ds + Es + F

From (11) and (13) the range of values of the coefficient T can be deter-

mined as

AF BE - CD-< T < (9
E - - E

It follows from (39) that this decomposition is possible only if

BE > AF + CD (40)

- a much stronger condition than (33).

It can be shown that if f(s) fails to satisfy (33) or (40), then

1/f(s) also fails to satisfy them.

A limited class of biquadratic minimum admittances can be realized

in a form of five-element bridge networks, as discovered by Kim and

VanValkenburg [19,46] (see Figure 10). The conditions which must be satis-

fied by the coefficients are
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2A

L ~CIcR

<R 

la)

SC R aS

RCD

I Fiq4ure 10. Five-elament bridge networks.
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AF = 4 BE = 4 CD

and

4 AF = 4 BE = CD

for the networks (a) and (b), respectively. This is, of course, a very

restrictive condition. Thus these networks are not of particular interest

in this development.

As was mentioned earlier, Streable and Pearson [39] have shown that

the first pole of the dipole antenna (see Table 1) can be perturbed slightly

(within a 5% margin) so that the modified pole-pair admittance associated

with that pole is physically realizable. This admittance has the form (12)

and circuit (a) from Figure 7 can be directly employed. Unfortunately,

the other pole-pair modules of the dipole (and all modules, except the

first, of the loop) fail to satisfy the PR-ness condition (13). Thus, a

resistive padding is necessary. The padded admittances, however, has the

general form (6) and the simple networks from Figures 5 and 7 cannot be

used. It can also be shown that the decomposition techniques discussed

above apply neither for the dipole nor the loop antenna. Thus, the general

synthesis methods discussed in Section IV must be used.

It is evident from Table 3 that the PR-ness test is only slightly

violated by the third and higher order modified pole-pair modules for the

dipole antenna. (Similar situation holds for the loop antenna.) The

question immediately arises if these pole-pair admittances could be real-

ized approximately by still using the circuit (a) from Figure 7 and

neglecting small negative elements which could arise. Such attempt has

been made and the network shown in Figure 11 was obtained. The transient

response of this network for the Gaussian pulse defined in Figure 12 was

evaluated by SCEPTRE [9] circuit analysis program and compared with the
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response obtained from the TWTD [25] thin wire analysis program. The

results are shown in Figure 13. It is evident that, although the main

features are preserved in the circuit response, the agreement between the

two curves is not satisfactory.

Another approximate equivalent network for the dipole antenna results

from the approach suggested by Baum and Singaraju [6]. They approximated

the natural modes of the dipole by sinusoidal functions and derived analy-

1
tically the following expression for the residues (real and equal for all

poles)

4
a = (41)

0

where 2 is the thickness factor and Z is the intrinsic impedance of free0

space. For the dipole from Table 1 a ; .001. For this residue and the

poles listed in Table 1 the PR-ness condition (14) is always satisfied and

the input admittance is realizable in the form (10). Using the circuit

(a) from Figure 5 we obtain the network shown in Figure 14. One defic-

iency of this network is apparent: its admittance is finite at zero fre-

quency, which is inconsistent with the structure under consideration.

The results of the SCEPTRE and the TWTD analyses are shown in Figure

15. The same Gaussian pulse as before was used.

Again, the agreement between these curves is not very good, but the

last approach, as more systematic than the previous ad hoc procedure, is,

of course, more satisfactory.

1
Normalized to rc/L.
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I

Section IV

SYNTHESIS OF MINIMUM BIQUADRATIC FUNCTIONS - GENERAL
METHODS

It is shown in Section III that the equivalent network synthesis on

pole-pair at a time basis leads in general to nonrealizable biquadratic

modules for the dipole and loop wire antennas. The real part characteristic

shown in Figure 4 is typical for these modules. It is also shown that the

PR character of pole-pair admittances can be restored by negligible resis-

tive padding. It is conceivable that this also holds for other (at least

high-Q) structures.

After resistive padding we obtain a minimum biquadratic function. Thus,

the function (6) for which the condition

)- 2 = BE (42)

holds. In general, this will be a Class III function (see Figure 3), the

real part of which is zero at some finite frequency w (if it happens too

be a Class I or Class II function it can be easily synthesized by the

methods of Section III). From (8) and (42) it can be shown that

2 AF + CD - BE /E
O = 2.(43)o - 2AD /AD

It is easy to see that the condition (42) can be satisfied by two

different sets of coefficients for which

- = (44a)

or

- = - (44b)

These will be referred to as cases A and B respectively.

-37-
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The imaginary part of Y(jw) can be computed from

m n m n
j Im{Y(jw)} = 2 2m2  - n2  s = j

which leads to

Im ,, (i ) W (AE - BD) 2 + (BF - CE) (45)

(F- Dw) + E w

At frequency wo' with the help of (43) and (44) we obtain

( ) = AB >0 (46a)

o o E

for case A, and

( < 0 (46b)

for case B.

In the following, the synthesis procedures applicable to minimum Class

III biquadratic functions are discussed.

4.1 BRUNE METHOD

Intrinsic to this method is the use of a perfect transformer. Thus, it

is rather impractical and is seldom used, except as a last resort. On the

other hand, the Brune network contains the minimum number of elements possi-

ble and thus can be convenient for analysis and modeling purposes.

At the frequency w the whole impedance Z(jw) = I/Y(jw) is purelyo

reactive

2(jW) = jX(W (47)
o jB(W 0

and can be represented by a single inductance

L = -1 (48)
1 w B(w
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For the case A, using (43) and (46a) we obtain

L = - (49)
/ BC

Although L is negative we proceed to remove the impedance sL from Z(s):

i(s) =(s) -sh Ds 2 + Es + F D50
As + Bs + C BC

We know that 2(s) has a zero at s = ±jw thus the term (s2 + w 2) can be

factored out in (50) to give

A-s + A-
Z(S) (s2 2 B C (51)

As + Bs + C

The zero of Z can be removed as a pole from Yl(S) = 1/Z1(S)

2a s
Y (s) = 2 2 + (s) (52)

s +W
0

where the first term represents the admittance of a series L2 C circuit

(Figure 16). The residue a can be easily computed as
0

B 2 B C-F
2a 2 = -F (53)

The values of L and C are given by2 o

1 F 1 F AD
2 2a B 2 B C (54)

0 W
0

S1 B
C (55)Co 22 F

0 w 2L Ff o2

From (52) and (53) the impedance Z l/Y2 is obtained as2
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z Cs) s~ +B (56)2 C BF C

which can be realized as a series L 3R circuit, where

L E (57)
3 C BF

and

F
R -(58)

C

The resulting network is shown in Figure 16. The negative inductance L1 can

be realized with the help of a perfect transformer. The network shown in

Figure 17 results.

By development analogous to the above, it can be shown that this network

is also valid for the case B.

As an example, the Brune equivalent network for the dipole antenna is

shown in Figure 18. (The amount of resistive padding used is given in Table

4. For the first pole-pair admittance, which is a Class I function, the net-

work (a) from Figure 7 was used.) The transient response of this network

for the Gaussian pulse (Figure 12) is compared with the result of the TkTD

analysis in Figure 19. Except for the early time, an excellent agreement is

observed.

4.2 BOTT-DUFFIN METHOD

This is the most general transformerless synthesis method. It's main

disadvantage in general application is the exponential growth of the number

of elements required with the number of cycles needed to reduce the given

function to a constant remainder. This difficulty is insignificant in the

present application of synthesis of biquadratic functions. Therefore it is
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LI L
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Figure 16. Brune network for biquadratic.
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Figure 17. Brune network for biquadratic -final torm.
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considered in detail here.

In the Bott-Duffin procedure, one makes use of the Richards function

kY(s) - sY(k) C59)
P(s) = kY(k) - sY(s)

in which k is a real positive constant. It may be shown that k(s) is PR if

Y(s) is PR, and that the order of it (defined as the total number of its

poles or zeros) is not higher than that of Y(s).

The equation (59) can be solved for Y(s) to give

S 1 + 1

i 1 +=2 (s)+SL (6)

where

( Cs) = (s) (61)
1 Y(k)

Z () 1 (62)
Y(k) R(s)

C Y(k) (63)0 k .

L 1 (64)
o kY(k)

This corresponds to the network shown in Figure 20. Note that the PR-ness

of Y(s) assures that the values C and L are positive and real.
0 0

It is easy to see that the network from Figure 20 is a balanced bridge

with the points A and B on the same potential. Thus, any impedance (even a

short circuit) can be placed in the detector arm A-B without affecting the

input admittance of the circuit. This can be exploited to reduce by one

the number of reactive elements necessary [27,32,37].
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IO

Figure 20. Illustration of the Bott-Duf fin method: network corresponding to
eq. (60).
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At the frequency s = jwO, from (60), we have

Y(jWo) jB(w) = 1 +1
0 0 l(jWo) + 2(jW) +JoL (65)

0 0

The special cases A and B referred to in the preceding section are

treated separately.

Case A

Because B(w ) > 0 for this case, the only possibility in satisfying

(65) occurs when ZI (jw o) 0 and =2 (Jo 0 From (61) and (62) we see that

this requires that R(s) have a zero at s = jwo . This in turn requires that

the numerator of (59) be equal to zero at this frequency:

kY(jw O ) - jwoY(k) = 0 (66)

or

w Y(k) - kB(w ) = 0. (67)
0 0

From (67) with the help of (46a) the value of C can be computed as0

Y(k) AB (68)
Co - ---0- - EF

0

In order to determine the value of L , eq. (67) must be solved for the real0

positive root k:

Ak2 + Bk + C - k ALB = 0. (69)
Dk

2 + Ek + F

With the help of (44a) this equation leads to

3 CE 2 CF C /EF 0k Ek 2 + Ck-- - =0. (70)
D AD D A
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Although (70) is a third order equation, the difficulty is an apparent one

only, because we know the two of the roots: k = -jwo" Thus, dividing (70)
22

by (k2 +w ) we find0

k= C. (71)
BD

From this equation and from (68) it follows that

Y(k) = /AC (72)

and

1 D BF(73)
Lo kY(k) C A3

The impedance Zl(s) has a zero at s = J0 and Z 2(s) has a pole at this

frequency. The poles of l/z 1(s) and Z 2(s) can be removed by the following

expansions

1 2al1s 1
2+ R (74)

Z- (S s2 + W 2 R1
o

2a s

72(S) 2 2 2 + R2. (75)
s +W

0

The residues a and a2 determine the values of the series-connected C1 and

L1 and the parallel-connected C2 and L2 (see Figure 21).

In order to compute the residues a1 and a2 we note that the numerator

and denominator of the Richards function must have the common factor (s-k)

[49]. After dividing it out, with the help of (44a), (71), and (72),

we get
2 CF

s 2 + -C_

R(s) = (76)

~ 2 (DED AC) D



-48-

CO L2C

LOL

EF I

L -/ L =M

I M 2 C.A-

R D L D .VF

M B= /- E/-

Figure 21. Bott-Duff in network for the Case A.
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and M

1 D sDiV A (77)
2 2 Dzl(S) s + W 0

0

Z (S) - (78)
2 2 2 C c

I ~~~S -4-F w A (90

where

M =B/DF+ EvAE (79)

Comparing (77) and (78) with (74) and (75) we obtain

S2ai M A(80)
1 2 DFV C
0

LI 1 =DV (81)
1 2a M

C= 1 = C- (82)
2a2 M F

L 2a A (83)
2 2 AC Cw

0

R1 = (84)
1A

SR2 F
R K (85)

2 C

j The final network for the case A is shown in Figure 21.

Case B

In this case 8(w ) < 0 and (44b) and (46b) apply. From (65) we see

I
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that 1/Z 1( j o ) = 0 and Z2 (jw o 0 which, by virtue of (61), (62), and (59),

leads to the condition

kY(k) - ioY(jwo) 0 0 (86)

or

kY(k) + w B(w ) = 0 (87)
0 0

From (65) and (87), using (43) and (46b) we obtain

L - 1 - DE (88)
o kY(k) W B(W0 ) BC0 0

In order to determine the value of C equation (87) must be solved for k.0

With the substitutions (43) and (46b) we obtain

2
Ak + Bk + C /02 - DE -o0 (89)

Dk 2 + Ek + F

which, with the help of (44b) leads to the equation

3 BF 2 CF F / BC
k - k + , - k- - 0. (90)

iEAD A DE
22,

Dividing (90) by (k2 + W 0, as in case A, we get0

k BF (91)
AE

Using (88) we also have

Y(k) /AC (92)
BDF

and

C = Y(k) = A CE (93)
o k F D
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The Richards function can be expressed as

/ 2(E /A- i B +-

A DF A) A (4

2 CF
s + -A

The poles of Z 1(s) and 1/2Z (s) can be removed similarly as in case A

1(S 2 2 1 (5
+ +W

0

1 -2 2 2 R (96)2 2(s) s 2+ W02 R 2

Using (61), (62), and (94) we obtain

M

z (S) =- /- s D(7
1 s2 +W2 A'(7

0

and

1DF&~C

C1 = = M (99)

L 1 MV- (100)
1 2 AM

2a2
C =-= (101)

2 2 My~
= =TW I

I0
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LiC, L2

F~ OD C

C2=F ,,DF L M

I AC F I M

Figure 22. Bott-Duff in network for the Case B.
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L = -2 /C, (102)

ii
= (103)

and

R= . (104)

The final network for the case B is shown in Figure 22.

Modified networks

As was mentioned previously, in both cases A and B one element can be

spared by placing appropriate reactance in the detect detector arm A-B and

performing delta-T or T-delta transformation. It has been shown by

Balabanian and Cahn [2] that in order for the T-delta transformation to be

physically realizable the impedance Zb(see Figure 23) must be inverse to

and Z must be inverse to the sum of the first two. Similar conditions
c a

must hold for the delta-T transformation. It is easy to see that the net-

works shown in Figure 24 satisfy the above conditions if the resonance fre-

quencies of the circuits formed by La Ca

LaCe = Lcb 1 2 (105)1

0

The relations between the elements in the T and Delta networks are also

given in Figure 24 [11].

Consider the case A first. From the above considerations it follows

that a capacitor Cb should be placed between the points A and B in Figure

21, the value of which is given by condition (105) as

C = A (106)
b F ED
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b b

Figure 23. Illustration of the T-delta transformation.

a cbc aC LIE ...

1,or C CC

ce(,C)CL 0Ca LCO+LCb=

Figur 24 T-dlt trnfrmto usdtLipiyteBt-ufi ewrs
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After replacing the T which appears to the right (Figure 21) by delta, the

network shown in Figure 25(a) results. The equivalent network given in

Figure 25(b) is obtained when the delta which appears at the bottom in Fig-

ure 21 is replaced by T.

For the case B, by analogous procedure, by placing an inductor

L E j(107)

in the detector arm of the network in Figure 22, we obtain the two equiva-

lent modified Bott-Duffin networks given in Figure 26.

It should be pointed out that, although the two networks given in

Figure 25 are fully equivalent, one of them may have more desirable element

values from the realization point of view. The same holds for the networks

in Figure 26.

As can be seen in Figures 25 and 26, the Bott-Duffin networks even in

the reduced form, are more complicated than the Brune network (Figure 17).

Apparently the price we pay to avoid transformers is extra elements.

Simplified Bott-Duffin Networks

It is of interest to note that all pole-pair modules for the dipole

and loop wire antennas qualify for the case A, i.e. at the zero real part

frequency w0 they can be approximately represented by a single capacitance

C given by (68).0

Real part characteristic of a typical modified pole-pair module,

before and after padding, is shown in Figure 27. From Figures 27 and 21

it is evident that R2 = 1/G. If the padding G is really negligible, R2

is a large resistance. Consequently, the whole branch in series with R2

contributes insignificantly to the total admittance and can be neglected.

I
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CO R R2

L C2-- R 1

CAC
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Figure 25. Modified Bott-Duffin networks for the Case A.
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Figure 25 (Continued).
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Figure 26. Modified Bott-Duffin networks for the Case B.
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This simplification was first discovered by Streable and Pearson [39].

It is conceivable that for some structures, made of a non-perfectly con-

ducting material, the real part characteristic of pole-pair admittances has

the form shown in Figure 28. Then, if the case B applies, the resistor

R = 1G in Figure 22 is large and the whole branch in series with R can be

neglected.

The simplified Bott-Duffin networks for both cases A and B are shown

in Figure 29.

The admittance of the simplified Bott-Duffin network for case A (see

Figure 29 (a)) is given by

[s + (B + E/ji)s + F/AC

(s+/' (s2 + Es + F)

This is a third order function which approximates the original second order

admittance (6). Note that besides the original poles, an additional real

pole (which happens to be close to tl'e origin for thin wire dipole and loop

antennas) is introduced. Also a zero at the origin is added. It is evident

that for higher frequencies the added zero and pole will approximately can-

cel and this function will differ insignificantly from the original one.

The equivalent network for the dipole antenna using the simplified Bott-

Duffin module from Figure 29 (a) is shown in Figure 30.

The transient response of this network for the Gaussian pulse (Figure 11)

is compared in Figure 31 with the result of TWTD analysis. The agreement is

excellent except for the early time. Corresponding results for the loop

antenna are shown in Figures 31A and 31B.

1The first pole-pair module was realized by the method given in Section III.

I
I
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4.3 DARLINGTON METHOD

In this method we seek the realization of a given function

mI + n
Z() = 1 1 (108)m2 +fn 2

in a form of an input impedance of a lossless two-port terminated in a single

resistor (Figure 32). Thus, i(s) can be written in the form

1 + --i
Rz1 1 + Izl Rz1 1 (

Z(s) - R + z122 = 11 z22

1 R R

where the z.. 's are the open-circuit admittance functions.

By comparison with (109), (108) can be rewritten in two ways as follows:

m 1 + n /m 1

Z(s) - 1 1 (case A) (110)n2  m/n 2

and

n 1 +m /n
i(s) = 1 1 1 (case B) (111)

m2 1 + n2/m 2

Thus, we can make the following identifications.

Case A Case B
mI  n1

Z = m2 (a)
n1

z22  m 2  Z2 2  n2
. .R - -(b) (112)SR n 2  R m 2

zi12 =N(-s2) z12 N -(-s2)
R n2  R n2  (c)

I
I
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Z(s) LOSSLESS R

Figure 32. Illustration of the Darlington procedure.

cnt t1

Figure 33. Cauer realization: component two-port for a compact pole.
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with

N(-s 2 ) = m1m 2 - n1n2  (113)

It is easy to see that z11 and z22, being the ratios of odd and even

parts of Hurwitz polynomials, are realizable reactance functions. In order

to satisfy the conditions of realizability of a lossless two-port we must

require that z12 be a rational function (N(-s 2) or -N(-s 2) must be a complete

square) and the residue condition

k -k22 k 12 > 0 (114)

be satisfied at all the poles [1,16].

For all finite poles si = jwi' in the case A, this condition takes the

form

ml dn dl 2 0. (115)
d 2 2 2 2 s jds sjW. ds s =jW.\dsj ~ w1 --Ji S Ji 1d-/ S- ~

Thus, the residue condition is satisfied with the equality sign at all finite

poles (the poles are compact). Similar conclusion holds for case B.

The set of three rational functions zll, z22, and z1 2 for which the

residue condition (114) is satisfied at each pole can be synthesized by the

Cauer realization procedure [1,49]. In this method the set of z parameters

(112) is expanded in partial fractions as follows

kl I _I (=) I2k11l si

11 + 2k s1 + k11  s 1 2I l = -j l 22

Rk (0)1 I I 2Rk ()s I
S=1 22 +I () + 22 (116)z22 s, 22 S +1 s2 +, 2 6

II , I Ij I
Iz k12(°lI +Irl k k 1h2Cls

1 s~2  k12 I1 I + W1  _

S 1 L 1 J



- 70 -

where only one pair of finite j-axis poles has been explicitly shown. Next,

the parameters in each of the brackets are realized as a two-port and the com-

plete realization is obtained as a series connection of these components.

If the poles are compact, the component two-port can be synthesized by

the network shown in Figure 33. The open-circuit impedance functions for

this network are

z 1 = Z, z22 = n Z, and z12 = nZ (117)

The parameters in any one of the brackets in eq. (116) can be represented as

Z =k g(s),
11 11

z22= Rk22 g(s), (118)

and

z12 -- kl 2g(s),

2 2
where g(s) represents 1/s, s, or 2s/(s + i

Comparison of (117) and (118) gives

Z = k11g(s) , (119)

and v k 2
n = 2- 2 (120)k 12

It is evident from (120) that the ideal transformer associated with the

given pole can be avoided by choosing

R k k 1 2

k 22

Returning to the biquadratic function (6) we have

mI = Ds2 + F, nI = Es,

m2 = As
2 + C, n2 = Bs, (122)

and N(-s2 ADs4 + (AF + CD - BE)s 2 + CF.
NsiD.C
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Making use of the minimum condition (42), the last expression can be written in

the form

N(-s 2) (/ s + CF )2 (123)

Thus, N(-s 2) is a complete square and the case A applies.

Substituting (122) into (112) we obtain

-- --I + -- s ,(a)
1ll B s B(a

CllA

z =R s + R s , (b) (124)
22 B s B

12 B s B (c)

It is easy to see from (124) that both the residues at zero and infinity are

compact.

From (119) and (120) we obtain

_ F 1Z --- n= AR F
Bs'

for the pole at zero and

Z = s, n - A
B

for the pole at infinity.

The Cauer realization is shown in Figure 34. The presence of perfect

transformers makes this network highly undesirable for practical realization.

The upper ideal transformer can be however replaced by a perfect transformer

according to the equivalence shown in Figure 35. The lower ideal transformer

can be completely eliminated if we choose R according to (121). Thus,

R = F/C. The final network is shown in Figure 36. Being identical with the

Brune network derived previously, it suffers, of course, from the same

I
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B

Z(S)R

Figure 34. Cauer realization for biquadratic.



I -73-

k=

L n2L
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I:n

L

IDEAL

I Figure 35. Perfect transformer and its equnivalent.
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Lam L AF
B Lb BC

c .2 R EOF C

Figure 36. Darlington network for biquadratic.
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deficiencies.

Hazony [16] described a modification of the above procedure leading to

no transformers at the expense of more RLC elements. This approach is dis-

cussed below.

Consider the even part of a minimum biquadratic impedance function

i(s) = 1/Y(s)

2 2 2AD (s 2 + W 2

Ev{(s)} = (1s5
2 2 22 (125)

(As + C) - B s

where either (44a) or (44b) holds and w is given by (43).0

2 2 2 2
By multiplying (125) by the surplus factor (k - s )/(k - s2 ) it can

be decomposed as shown below

2 2 2 22
k2AD(s 2 + w2)

[(Ak + B)s2 + kC]2 -s 2 [As2 + C + Bk]2

(126)

2 2 2 2
- s2AD(s +

0

[(Ak + B)s
2 + kC] - s 2[As2 + C + Bk]

2

or

2 2m 0 n 0
Ev{i(s)} = Ev{Z (s)} + EV{2 (s)} -2 2 + 2 2

m2 - n2 m2 - n2

where Z (s) and Z (s) can be synthesized by Darlington's procedure. The
1 2

positive constant k can be chosen so that no transformers result.

Consider Z1 (s) first. From (112) we have

z22 -m 2 = (Ak + B)s
2 + kC (128)

R2 n2 s(As 2 + Bs + C)

z12 m kV (s2 + W 2

o 2 (129)

2 2 s(As + C + Bk)



-76-

There are two distinct cases which will lead to no transformers: (1) the zero

of Z1 2 will cancel itc pole or (2) z22 has same zeros and poles as z12.

For the first case we have

C + Bk 2
A 0

or

B D

which is positive only when (44a) holds (case A). Thus,

k= CBD (130)

In the second case above we have

kC 2 (131)
Ak + B o

or

k B

which is positive only when (441 >olds (case B). Thus,

k = B (132)
AE

In both cases the remaining impedance zll can be found from the residue

condition (the residues must be compact).

Consider the case A first. Substituting (130) for k in (128) and (129)

we obtain (after partial fraction expansion)

C IEF
z -- M

R = + 2 2 (133)
2 s +W

0
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CEz(134)

and, from the residue condition,

/EF
Zll = (135)

with

M BD + E A

This set of parameters can be now easily realized by the Cauer method

described previously. For the pole at zero we eliminate the ideal transformer

by choosing the value of R2 as prescribed by (121). Thus, R2 = F/C. The

pole at ±jw 0 is a private pole [47] of z22 and can be simply realized as a

parallel LC network connected in series with the output. The resulting net-

work is shown in Figure 37.

Consider the case B next. From (128), (129), and (132) we obtain

C__ MB C
_22 R s RA/E

R + 2 R (136)
2 s + AVAE

and

F v'B MB
z12 -T- R3
12 + E (137)
2 22 s + A /- .

with

R = C E + BrEF.
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T 12

R R F
CO= FvfBi

MBF 'R 2 ~ C

R mC i.A- + B -/iBF Mm BAT~ +E/A-

Figure 37. Darlington procedure: realization of Z(s) - Case A.
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From the residue condition we get

FV~ MBF

Z R + RAVCE(181lJ S 2 R(18
s + A

The choice R =F/C leads to a transformerless realization shown in Figure
2

38. This network is equivalent to network shown in Figure 39.

For the impedance Z (s), from (126), (127), and (112) , we have
2

z 2 n 2 (s2+C+Bk
= - s= As +CBk (139)

R 1 m 2 -(Ak +B)s 2 + kC

and

z n s1/Xz(s 2+ W 2
12 0 0

V71 m 2  (Ak +B)s 2+ kC (40

Again, two cases "~re possible. For the case A we get

MB

z22 A YBD s92A
R Q 2 +'r (141)
R1 2 + -Ct

Q

MB

12 _AB+_ L2/C (142)

and

ZDVD + (43Q S2 +C V- (13

Q

where

Q =AY'C- + B/B-
5

The choice R = D/A leads to a transformerless realization shown in Figure 40.

1i
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C0  R 2

L2

F/A

Figure 38. Darington procedure: realization of 2Z(s) -Case B.
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C'

L 1 W

!M

LII m

Figure 39. Darlington procedure: network equivalent to network given in
Figure 38.
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YcRI

L MBD D

Figure 40. Darlington procedure: realization of Z s) -Case A.
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I

L

L0  RI

LI /DF I -

Figure 41. Darlington procedure: network equivalent to network shown in
Figure 40.
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This network is equivalent to the network shown in Figure 41.

For the case B we get

M
z22 -s A BE A - (144)

R1 Bl ED 2 + 2' 14
0

112  = s (14 )

/__-(15

1 BC

and

DEZ s (146)

With R = D/A this set of parameters has the realization shown in Figure 42.

If we now connect in series the networks for Z1 and Z2 for the cases A

and B, the networks in Figure 43 result.

It can be shown by using the equivalent networks from Figures 38 and 41,

that the networks obtained are the Bott-Duffin networks (Figures 21, 22)

except that the detector arms are short-circuited.

4.4 MIYATA PROCEDURE

In this method the even part of the given function Z(s) is decomposed

as follows
2 P2a (-s)

Ev{i(s)} N(-s ) = P P
2 2 2 2m 2  - n2  m2  - n 2

a 
an (-s

2 2 2 2 + .  +  2 2
m2 - n2 m2 n 2 m2 n 2

=Ev{i } + Ev{ I + ... + Ev{f i (147)
o n
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I

L I C

ACC

j Figure 42. Darlington procedure: realization of Z~s) - Case B.
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0 L c LcT
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CLnQ JA' D Ri

0 AwT' + B,/-36 AT,/ - W"C" -B

(0)

Figure 43. Final form of Darlington networks for Cases A(a), and B(b). )
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If the coefficients a. are positive, each of the even parts in (147) will1

correspond to an impedance which can be realized as a network containing n

reactive elements plus a resistance.

Even if some of the coefficients a. in the original function are negative1

they can be made positive by multiplying the numerator and the denominator

of Z(s) by suitable surplus factors [1]. This procedure fails however if

2 2 2 2
N(-s ) contains factors of the form (s + W )0 . A look at eq. (125) reveals

that our function falls into this very class. Thus, the Miyata procedure

is not applicable to minimum functions.
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Section V

PRACTICAL MATTERS

5.1 CAPACITIVE ADJUSTMENT

It is of interest to point out that all the SEM derived equivalent net-

works given in Section IV fail to reproduce the early time response of the

structure, as computed by TWTD program. It was suggested by Streable et. al.

(40] that this departure of results is attributable to the quasistatic influ-

ence of the reactance which one neglects when the summation (1) is truncated

to a finite number of elements for realization. This asymptotic reactance of

a given structure must be computed apart from the SEM representation and the

reactance of the truncated equivalent circuit must be adjusted with additional

element(s) so as to match that of the object in the asymptotic limit.

As an example the static capacitance of the simplified Bott-Duffin net-

work for a dipole antenna (Figure 30) was adjusted by adding a 70 pF capaci-

tance C in shunt. A remarkable improvement in the early time response ofa

the network was observed (Figure 44). This particular value of C was founda

by a cut and try method but systematic means of finding it are conceivable.

For example, C could be determined as a difference between the statica

capacitance of the structure determined by some auxiliary means - for

example, a method of moments solution for the static capacitance - and the

static capacitance of the equivalent network synthesized from the SEM data.

Unfortunately, it is believed that this method cannot be employed in the

case of approximate, resistively padded networks.

5.2 PARASITIC EFFECTS

All networks considered thus far comprise only ideal RLC elements.

-.89 -
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However, in the practical realization each element introduces some parasitic

elements which have deteriorating influence on the network performance. There-

fore the impact of the parasitic effects should be carefully considered,

particularly if the network has to operate at high frequencies.

As a rule, the inductors are the most troublesome elements. The quality

of resistors and capacitors is usually much higher and they can be often

treated as ideal, particularly at moderate frequencies.

A useful equivalent network for an inductor is shown in Figure 45 [44].

This three-element network offers a fairly accurate description of most coils

at frequencies where they are designed to operate.

As an example, we considered the effect of the parasitic elements intro-

duced by inductors on the performance of the equivalent network for the

dipole antenna (Figure 30). The quality factor Q 200 at frequency w = 10*106

rad/sec was assumed for all coils and the computations were done for C = lpF

and C - 2pF.

The network responses for these cases are compared with the response of

the original network in Figures 46 and 47. It is evident that the parasitic

effects have very deteriorating impact on the network performance. As can

be seen from these figures the response of the network is very sensitive to

the change of the parasitic capacitance. Thus, whenever possible, configura-

tions should be chosen in which capacitors appear in parallel with inductors.

For then the parasitic effect can be cancelled by reducing the size of the

capacitor. The parasitic capacitance then makes up for the reduction.

5.3 NETWORK SENSITIVITY

Another factor limiting the practicality of the realization is the sensi-

tivity of the network response to changes in element values. Thus, it is
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important to choose, from all the networks available, the one which exhibits

the least sensitivity.

It was shown in Section IV that the only transformerless synthesis pro-

cedure available for minimum biquadratic functions is the Bott-Duffin method.

Unfortunately, the Bott-Duffin network is very sensitive to component errors.

The mechanism behind this sensitivity is as follows [47].

The admittance of the Bott-Duffin network (Figure 21) should generally

be of order six. Thus, in order to represent a second order function, a

cancellation of some poles and zeros must occur - the network is a balanced

bridge. If the element's values are changed in some random fashion, then all

zeros and poles migrate and the bridge balance is destroyed producing a

significant change in the character of the function.

As shown in Section IV, it is the minimum PR character of the approxi-

mate pole-pair admittances that restricts the applicable synthesis tech-

niques. Thus, it is conceivable, that by excessive resistive padding, but

still within the limits of acceptable approximation, other, less sensitive

realization could be obtained (by Miyata procedure, partial fraction expan-

sion, etc.).

Finally, it should be noted that the equivalent networks of high-Q

structures (like thin wire dipole and loop antennas) are intrinsically very

sensitive to changes in element values, no matter what the form of their

realization. This is so because the poles of the sensitivity function coin-

cide with the poles of the imittance function.



II

Section VI

CONCLUSIONS

The first layer conjugate pole-pair modules for the dipole and loop wire

antennas are, in general, not PR. However, they can be made PR by negligible

resistive padding. It is conjectured that this is true for most high-Q

structures.

The padded pole-pair module is a minimum-real-part biquadratic function.

If the zero of the real part of this function occurs at zero or infinity,

it can be easily realized by continuous fraction expansion (Section III). If

however the zero of the real part occurs at some finite frequency (the func-

tion is Class III, in terminology of Section III) then, as shown in Section

IV, the Bott-Duffin network constitutes the exclusive transformerless form

derivable.

It is shown that for structures which qualify for this type of analysis

the Bott-Duffin network can be simplified to a simple four-element network.

This network has been shown to give very favorable results for straight-wire

and wire-loop antennas.

Explicit forms of this and other networks are derived in Sections III

and IV.

It is shown in Section V that the early time response of the dipole

antenna can be significantly improved by capacitive adjustment. The value

of the capacitor added must be, however, computed apart from the SEMi representation.

As was demonstrated in Section V, the parasitic elements associated

with the real RLC elements can have a very deteriorating influence on the

-97-



- 98 -

network performance. Therefore, if one attempts practical realization of the

network, this issue should be carefully considered in the design.

The sensitivity of the network response to changes in element values

is another factor which limits the practicability of the derived networks.

Thus, whenever possible, the least sensitive network should be chosen for

realization.

Finally, the equivalent networks of high-Q structures are intrinsically

very sensitive. It is this kind of sensitivity which dominates in the case

of thin-wire structures.



i Section VII

APPENDIX

Below the listing of a FORTRAN program for the conjugate pole-pair synthe-

sis of an admittance function implementing the results of Section III and

Section IV is included.

The program works in conversational mode. The input consists of the

poles, the residues, and the normalization constant (identical for poles and

residues). The program computes the coefficients of the biquadratic (6),

the minimum real part frequency, the necessary padding (with respect to

unmodified pole-pair module) and prints out the element values (normalized

and absolute) for several different network configurations. The element

names refer to relevant figures of Sections III and IV.

A sample run is included following the listing of the program.

I99

1 -99-
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DIMENSION ALFA(1O),BETA(IO),SIGM4A(1O),OMEGA(1O)
COMMON FAC

987 CALL INPUT(N,SIGMA,OMEGA,ALFA,BETA,FAC,SCALE)
DO 1 I-1,N
A=O.
B-2. *ALFA (1)
C-2.*(ALFA(I)*SIGMA(I)-BETA(I)*OMEGA(I))
D=l.

F-SIGMA (I) **24(iNEGA (I1) **2
WRITE (5,97)1

97 FORiAT(///1OX'****** POLE PAIR NO.'I3' ***'/
WRITE(5,204)

204 FORMAT(/P THE COEFFICIENTS BEFORE PADDING-)
WRITE(5, 11O)A,B,C,D,E,F

110 FORMAT(/' A ='E11.4' B ='E11.4' C ='E11.41
1 ' D ='E11.4' E ='E11.4' F ='E11.4/)

CALL FIND(A,B,C,D,E,F,W1,G1,IND)

IF(G1.NE.O. )R1--1/G1
WRITE(5,205)W1 ,R1

205 FORMAT(/ THE MINIMUM REAL PART OCCURS AT THE
1 (NORMALIZED) '/' FREQUENCY ='E13.6/
1 - THE NECESSARY PADDING IS -'E13.6' OHMS'/)

WRITE(5,125)
125 FORMAT(/' NEW COEFFICIENTS (AFTER PADDING)')

WRITE(5,110)A,B,C,D,E,F
IF(IND.EQ.O)GOTO 51
IF(IND.EQ.-1)CALL TRYI(A,B,C,D,E,F)
IF(IND.EQ.1)CALL TRY2(A,B,C,D,E,F)
GOTO 1

51 CALL BRUNE(A,B,C,D,E,F)
CALL HELP(A,B,C,D,E,F,KQ)
IF(KQ.EQ.O)CALL AEOTT(A,B,C,D,E,F)
IF(KQ.EQ.1)CALL BBOTT(A,B,C,D,E,F)

1 CONTINUE
WRITE(5, 185)

185 FORMAT(/// ENTER 1 FOR NEXT PROBLEM
1 OR ZERO TO STOP'!)

READ (5, *)1cY

IF(KY.EQ.1)GOTO 987
STOP
END

SUBROUJTINE FIND(A,B,C,D,E,F,WO,GO,IND)
LOGICAL BUG
V(X)-(W-X*U)/(2.*D*(A-X*D))
BUG-. FALSE.
Z 0-C/F
ZI1-A/D
IF(BUG)WRITE(5, 11)ZO,Z1

11 FORMAT(' ZO -'E13.5' ZI -='E13.5)
Z-AMIN1 (ZO,Z1)
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IND--I
w1 -0.
IF(ZO.LE.Z1)GOTO 5
IND- 1
Wi-i. E38

5 W-A*F+IC*D-B*E
U-2. *D*F-.E*E
Al-iU*U-4. *(D*F) **2
B1-4. *A*D*F**2+4. *C*D**2*F-2. *UJ*W
C1-W**2.4. *A*C*D*F
DELu-B1*B1-4.*Ai*Cl
IF(DEL.LT.0.)STOP' FIND: DELTA.LT.O ?

SQ-SQRT (DEL)
Xl- (-B1-SQ) /2. /A1
X2- (-B i+SQ) /2. /A1
0 1-V (Xl)
02-V(X2)
IF(BUG)WRITE(5,1O)X1,X2,O1,02

10 FORMAT(/' Xl -'E13.5' X2 ='E13.5/' 01 -'E13.5' 02 -'E13.5)
IF(O1.LT.0..AND.02.LT.0. )GOTO 7
IF(O1.LT.O. )X1-1.E38
IF(O2.LT.0. )X2-i.E38
IF(X1.LT.X2)GOTO 3
GO-X2
WO=SQRT (02)
GOTO 2

3 GO-XI
WO-SQRT (01)

2 IFC(GO.GE.Z)GOTO 7
IND-O

1 A-A-GO*D
B-B-GO*E
C -C-C 0*F
RETURN

7 GO-Z
WO-WI
GOTO 1
END

C
SUBROUTINE HELP(A,B,C,D,E,F,KQ)
KQ-O
AF-A*F
Q i-SQRT (AF)
CD-C*D
Q2-SQRT (CD)
BE-B *E
Q3-SQRT (BE)
Q4-Q l-Q2
QQ..Q4**2-BE
IF(ABS(QQ).GT.1.E-4)STOP' HELP: NOT A MINIMUM FUNCTION'
IF(Q4.LT.0. )KQ-1
RETURN
END

C

.I .
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SUBROUTINE ABOTT(A,B,C,D,E,F)
REAL M,L,L1,LN1,L2,LN2,LN
COMMON FAC
Ma.B*SQRT (D*F ).9.*SQRT (A*C)
CX-SQRT(A*B/E/F)
L 1-D /M*SQRT (D*F)
Cl-M/D/F*SQRT (A/C)
Rl-D/A
L2-M/A/C*SQRT (A/C)
K2-F/C
C2-A*C /M*SQRT CD/F)
L-D/C*SQRT (B*F/A/E)
CN-CX/FAC
LN1 -Ll1/FAC
CN1-C1 /FAC
LN2-L2/FAC
CN2-C2 /FAC
LN-L /FAC
WRITE(5, 131)

131 FORMAT(PI BOTT-DUFFIN-CASE(A)-UNMODIFIED' I)
WRITE(5, 132)

132 FORMAT(7X'NORHALIZED'6X'FINAL')
WRITE(5, 100)CX,CNL1,LN1,C1,CNI,R1,Rl,R2,R2,

1L2,LN2,C2,CN2,L,LN
100 FORMAT(

I CO -'2E13.5/' Li -'2El3.5/' Cl -'2E13.5/' RI -'2EI3.5//
2 ' R2 -'2E13.5/' L2 -'2E13.5/' C2 -'2E13.5/' LO -=2El3.5/)

R-F*SQRT (B*D)+E*SQRT (C*E)
CX-S QRT (A*B fE/F)
L 1=R*D /M**2 *SQRT (B*D)
C1=M**2/R/C/D*SQRT (A*C/B/F)
Ri mD/A
C2-A*C /R*SQRT (D*E IA/F)
R2-F/C
L-R/C/SQRT (C*E)
CN-CX /FAC
LN1-L1/FAC
CN1mC1 /FAC
CN2-C2 /FAC
LN-L/FAC
WRITE(5, 133)

133 FORMAT( BOTT-DUFFIN-CASE(A)-MODIFIED(A) 'I)
WRITE(5,132)
WRITE(5,1O1)CX,CNL1,LN1,C1,CN1,C2,CN2,L,LN,R1,R1,R2,R2

101 FORMAT(
1' CO -'2E13.5/P Li -'2E13.5/' Cl -'2El3.5/' C2 -'2E13.5/

2 ' LO -'2EI3.5/' Rl -'2EI3.5/' R2 -'2El3.5/)
Q-A*SQRT (C*E)+B*SQRT CB*D)
CX-SQRT(A*B/E/F)
CN-CX/FAC
R 1-D IA
CI-Q/C/D*SQRT(A*C/B IF)
CN1-C1 /FAC
L2-M**2/Q/C/SQRT (E*C)
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LN2 -L2 /FAC
LuD /Q*SQRT (B*D)
LN-L /FAC
R2-F/C
WRITE(5,134)

134 FORMAT(P BOTT-DUFFIN-CASE(A)-MODIFIED(B) 'I)
WRITE(5, 132)
WRITE(5,102)CX,CN,C1,CNIL2,LN2,C2,CN2,L,LN,R1,R1,R2,R2

102 FORMAT(
I ' CO -'2E13.5/' Cl -'2E13.5/' L2 -'2E13.5/' C2 -'2El3.5/
2 ' LO -'2E13.5/' RI -'2EI3.5/' R2 -'2E13.5/)

CX-SQRT (A*B/E/F)
U;N-CX/FAC
RI -D/A
C 1.Q**2*SQRT (A/C) /(M*B*D)
CN1-C1 /FAC
L 1WM*B*D /CC*Q*SQRT (A*E))
LNl -Li /FAC
LuD /Q*SQRT (B*D)
LN-L /FAC
L2-M*SQRT (A/C) /(A*C)
LN2-L2/FAC
C2auA*C*SQRT (D/F) /M
CN2-C2/FAC
R2-F/C
WRITE (5, 152)

152 FORMAT(/' DARLINGTON-CASE(A)'/)
WRITECS, 132)
WRITE(5,100)CX,CN,L1,LNI,Cl,cN1,R1,R1,R2,R2,

I L2,LN2,C2,CN2,L,LN
RETURN
END

C
SUBROUTINE BRUNE(A,B,C,D,E,F)
REAL LA,LB,M,LNA,LNE,MN
C0OMN FAC
LA-D lB
LNA-LA/FAC
LBauA*F/B IC
LNB-LB /FAC
M-A/B*SQRT (D*F/A/C)
MN-K /FAC
CX-B/Fi CN-CX/FAC
R-F/C
WRITE(5, 135)

135 FORMAT(/ BRUNE NETWORK*/)
WRITE(5,132)

132 FORMAT(7X*NORMALIZED'6X'FINAL')
WRITE(5, 105)LA,LNAIILB,LNB,M,MNCX,CN,R,R

105 FORMAT(
I ' LA -'2E13.5/' LB -'2E13.5/' M -'2El3.5/
2 ' CO -'2E13.5/' R -'2El3.5I)

RETURN
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END
C

SUBROUTINE TRY1(A,B,C,D,E,F)
REAL L1,LN1
COMMON PAC
IF(ABS(C).GT.1.E-8)STOP' TRY 1: C.NE.O V'
Q-B*E-A*F
IF(Q.LT.0.)STOP' TRY 1: BE-AF .LT. ZERO V'
IF(Q/B**2.GT.D/A)GOTO 7
Cl-B/F
CN1 -Cl /FAC
R1-Q/B**2
L 1-D/B-A*Rl /B
LN1-L1 /FAC
R2-B*L 1/A
WRITE (5, 107)

107 FORMAT(/' LADDER NETWORK 1-A (ZERO AT ZERO)'/)
WRITE(5,132)

132 FORMAT(7X'NORMALIZED'6X'FINAL')
WRITE(5, 120)C1,CN1,R1,R1,LI,LN1,R2,R2

120 FORMATC' Cl -'2E13.5/' Ri -'2El3.5/' Li -'2E13.5/
1 ' R2 -'2E13.5/)

RETURN
7 Cl-B/F

CN1-Cl1/FAC
Ri -D IA
C2u-A**2*B/ CA*Q.-B**2*D)
CN2-C2 /FAC
R2-Q /B**2-D IA
WRITE(5 ,137)

137 FORMAT(/' LADDER NETWORK 1-B (ZERO AT ZERO)'/)
WRITE(5, 132)
WRITE(5, 121)Cl,CN1,R1,RI,C2,CN2,R2,R2

121 FORMAT(' Cl -'2E13.5/' Ri -'2E13.5/' C2 -'2E13.5/
1 ' R2 -'2E13.5/)

RETURN
END

C
SUBROUTINE INPUT(N, SI(GA,OMEGA,ALFA,BETA,FAC,SCALE)
REAL ALFA(1O),BETA(10),SIGMA(10),OHEGA(10)
WRITEC5, 200)

200 FORMiAT(//' GIVE N - THE NUMBER OF CONJUGATE
1 POLE PAIRS'/)

READ (5, *)N
WRITE (5,201)

201 FORMAT(' GIVE THE POLES AND THE RESIDUES'/
1' -REAL + j IHAG +REAL + j IMAG'/)

DO 37 1-1,N
37 READ(5,*)SIGMA(I),OMEGA(I),ALFA(I),BETA(I)

WRITE (5,203)
203 FORMAT(/' GIVE THE NORMALIZATION'/)

READ(5,*)FAC
RETURN
END
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C
SUBROUTINE TRY2(A,BC,D,E,F)
REAL L1,LN1,L2,LN2
COMMON FAC
IF(ABS(A).GT.1.E-8)STOP' TRY 2: A.NE.ZERO ?p

Q-B*E-C *D
IF(Q.LT.O.)STOP' TRY 2: BE-CD .LT. ZERO V'
IF(Q/B**2.GT.F/C)GOTO 17
Ll-D/B
LNL-Ll1/FAC
RlmQ/B**2
Cl-B**3/ (B**2*F-Q*C)
CNI -Cl /FAC
R2-F /C-Q /B**2
WRITE (5,108)

108 FORMAT(I' LADDER NETWORK 2-A (ZERO AT INFINITY)'!)
WRITE (5, 132)

132 FORMAT(7X'NORMALIZED'6XFINAL-)
WRITE(5,120)C1,CNL,Ri,R1 ,L1,LNL,R2,R2

120 FORMAT(' Ci -'2E13.5/' RI -'2E13.5/p Li --2E13.5/
1' R2 -'2E13.5/)
RETURN

17 Ll-D/B
LN1-L1/FAC
Ri-F/C
L2-(Q*C-B**2*F) /(B*C**2)
LN2-L2/FAC
R2m.Q/B**2-F/C
WRITE(5, 138)

138 FORMAT(/' LADDER NETWORK 2-B (ZERO AT INFINITY)'/)
WRITE(5, 132)
WRITE(5, 123)Ll,LNI,Rl,R1 ,L2,LN2,R2,R2

123 FORMAT(' Li -p2Ei3.5/' RI -'2EI3.5/' L2 -'2E13.5/
I'R2 -'2EI3.5/)
RETURN
END

C
SUBROUTINE BBOTTCA,B,C,D,E,F)
REAL M,L,LN,Li,LN1,L2,LN2
COMMON FAC
M-B*SQRT CD*F)+E*SQRT CA*C)
CX-A/F*SQRT (C*E /B/D)
CN-CX/FACi Li-M/A/C*SQRT (D IF)
LN1'Ll1/FAC
C1-A/M*SQRT(A*C)I CNi -Ci/FAC
R1-D/A
C2-M/F/SQRT(D*F)
CN2-C2/FAC
L2-D*F/*SQRT (A/C)
LN2-L2 /FAC
R2-F/C

L-SQRTCD*E/B/C)
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LN-L /FAC
WRITE (5, 231)

231 FORMAT(/' BOTT-DUFFIN CASE.(B)-UNMODIFIED I)
WRITE(5, 132)

132 FORMAT(7X'NORMALIZEDY6X'FINAL')
WRITE(5, 200)CX,CN,L1,LN1,C1,CN1,R1 ,R1,

1 C2,CN2,L2,LN2,R2,R2,L,LN
200 FORMAT(

I ' CO -'2E13.5/' Li -'2EI3.5/P Cl -'2E13.5/P RI -'2E13.5//

2 ' C2 -'2El3.5/' L2 -'2El3.5/' R2 -'2EI3.5/' LO -'2E13.5/)

Q-D*SQRT (B*F)+E*SQRT(A*E)
CX-A/Q*SQRT (A*E)
CN-CX/FAC
Ril I/A
LlQ/A/C*SQRT(C*D/E/F)
LN1-L1/FAC
R2-F/C
C2-M**2/Q/F/SQRT (B*F)
CN2-C2 IFAC
L2-Q*A*F/M**2*SQRT(B*D/A/C)
LN2-L2/FAC
L-SQRT (D*E/B/C)
LN-L/FAC
WRITE(5, 233)

233 FORMAT(P BOTT-DUFFIN-CASE(B)-MODI'FIED CA)'!)

WRITE (5, 132)
WRITE(5, 201)CX,CN,R1,R1,L1,LN1,R2,R2,

I C2,CN2,L2,LN2,L,LN
201 F'ORMAT(

1 ' CO -'2EI3.5/' Ri -'2El3.5/' Li -'2EI3.51' R2 =-'2E13.5/

2 ' C2 -'2E13.5/' L2 -'2E13.5/' LO -'2E13.51)
R-C*SQRT (A*E )4B*SQRT (B*F)
CX-R/F/SQRT (B*F)
CN-CX/FAC
L2-A*F/R*SQRT (B*D IA/C)
LN2-L 2 IAC
LlM**2/R/A/C*SQRT (C*D /E/F)
LNi-LlIFAC
Cl mR*A/M**2*SQRT (A*E)
CNi -Cl /FAC
RI -D/A
R2-F/C
L-SQRT(D*E/B/C)
LN-L/FAC
WRITE(5, 234)

234 FORMAT Cl BOTT-DEIFFIN-CASE(B)-MODIFIED (B) 'I)
WRITE(5,132)
WRITE(5,202)CX,CNL2,LN2,L1,LN1,C1,CNl,

1 Rl,R1,R2,R2,L,LNI
202 FORMAT(

1 'CO -'2E13.5/' L2 -'2E13.5/' Li -'2E13.5/' Cl -'2E13.5/

2 'RI -'2E13.5/' R2 -'2E13.5/' LO -'2E13.5/)
CX-R/F/SQRT(B*F)
CN-CX /FAC
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L2-M*B*F*SQRT (A/C) /R**2
LN2-L2 /FAC
L 1-M*SQRT (D F) IA/C
LN1-Ll/FAC
C2-R*A*SQRT CC*E) fM/B/F
C;N2-C1 /FAC
Ri -D IA
R2-F/C
L-SQRT (D*EIBIC)
LN-L/FAC
C 1mA*SQRT (A*C) IM
CN1-C1 /FAC
WRITE(5 ,252)

252 FORMATW/ DARLINGTON-CASE(BO'/)
WRITE(5,132)
WRITE(5,200)CX,CN,L1,LNI,C1,CNI,Rl,Rl,

1 C2,CN2,L2,LN2,R2,R2,L,LN
RETURN
END
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ex granit.for
LINK: Loading
[LNKXCT GRANIT Execution]

GIVE N - THE NUMBER OF CONJUGATE POLE PAIRS

2

GIVE THE POLES AND THE RESIDUES
-REAL + j IMAG -+REAL + j 114kG

.08427 .9158 .1112e-2 .312le- 3

.1473 2.870 .1319e-2 .3301e-3

GIVE THE NORMALIZATION

9.4248e6

**~*POLE PAIR NO. 1 **''

THE COEFFICIENTS BEFORE PADDING

A - O.OOOOE+OO B - 0.2224E-02 C -- 0.3842E-03

D - 0.1OO0E+0-1 E - 0.1685E+00 F - 0.8458E+00

THE MINIMUM REAL PART OCCURS AT THE (NORMALIZED)
FREQUENCY - O.OOOOOOE+O

THE NECESSARY PADDING IS - 0.220129E+04 OHMS

NEW COEFFICIENTS (ATER PADDING)

A - 0.4543E-03 B - 0.2301E-02 C - O.OOOOE+0
D - 0.1000E+01 E - 0.1685E+00 F - 0.8458E+00

LADDER NETWORK I-A (ZERO AT ZERO)

NORMALIZED FINAL
Cl - 0.27200E-02 0.28860E-09
Ri - 0.66342E+00 0.66342E+00
LI - 0.43454E+03 0.46107E-04
R2 - 0.22006E+04 0.22006E+04
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****POLE PAIR NO. 2 ***

THE COEFFICIENTS BEFORE PADDING

A - O.OOOOE+OO B - 0.2638E-02 C --0.1506E-02
D - 0.1000E+O1 E - 0.2946E+00 F - 0.8259E+01

THE MINIMUM REAL PART OCCURS AT THE (NORMALIZED)
FREQUENCY - 0.159812E+01ITHE NECESSARY PADDING IS 0 .495870E+04 OHMS

NEW COEFFICIENTS (AFTER PADDING)

A - 0-2017E-03 B - 0.2697E-02 C - 0.1593E-03

D - O.IOOOE+Oi E - 0.2946E+00 F - 0.8259E+01

BRUNE NETWORK

NORMALIZED FINAL
LA 0 .37073E+03 0.39335E-04
LB 0 .38764E+04 0.41130E-03
M - 0.11988E+04 0.12720E-03
CO - 0.32662E-03 0.34655E-[O

R - 0.51850E+05 0.51850E+05

BOTT-DUFFIN-CASE (A) -UNMODIFIED

NORMALIZED FINAL
CO - 0.47285E-03 0.50170E-10
Li - 0.36822E+03 0.39069E-04ICl - 0.10634E-02 0.11283E-09
RI - 0.49587E+04 0.49587E+04

IR2 - 0.51850E+05 0.51850E+05
L2 - 0.27340E+06 O.29008E-Ol
C2 - 0.14322E-05 0.15196E-12
LO - 0.12157E+06 0.12899E-01
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BOTT-DUFFIN-CASE(A)4ODIFIED (A)

NORMALIZED FINAL
CO - 0.47285E-03 0.50170E-10
Li - 0.36745E+03 0.38987E-04

Cl-0.10656E-02 0.11306E-09
C2 -0.99133E-06 0.10518E-12

LO 0 .39497E+06 0.41908E-01
RI 0.49587E+04 0.49587E+04 L
R2 0 .51850E+05 0.51850E+05

BOTT-DUFFIN-CASE (A)-MODIFIED(B)

NORMALIZED FINAL

Ci = 0.10666E-02 0.11317E-09
L2 - 0.39460E+06 0.41869E-01
C2 - 0.99133E-06 0.10518E-12
LO - 0.36711E+03 0.38951E-04
Ri - 0.49587E+04 0.49587E+04
R2 - 0.51850E+05 0.51850E+05

DARL INGTO N-CASE (A

NORMALIZED FINAL
CO - 0.47285E-03 0.50170E-10

Li - 0.12121E+06 O.12860E-Ol
CI - 0.10698E-02 0.11351E-09
RI - 0.49587E+04 0.49587E+04

R2 - 0.51850E+05 0.51850E+05

L2 - 0.27340E4-06 0.29008E-01
C2 = 0.14322E-05 0.15196E-12

LO - 0.36711E+03 0.38951E-04

ENTER 1 FOR NEXT PROBLEM OR ZERO TO STOP

0

STOP

END OF EXECUTION
CPU TIME: 0.38 ELAPSED TIME: 3:15.70

ZMIT
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